
Copyright is held by the author / owner(s). 
SIGGRAPH 2010, Los Angeles, California, July 25 – 29, 2010. 
ISBN 978-1-4503-0210-4/10/0007 

Voronoi Diagram Computation for Protein Molecules Using Graphics Hardware

Ku-Jin Kim∗ Jung-Eun Lee† Nakhoon Baek‡

Kyungpook National University, Republic of Korea

Figure 1: (a) snapshots from our CUDA-based implementations (b) a clipped plane view

1 Introduction

We present an interactive algorithm to compute Voronoi diagrams
for protein molecules. In the research area of biochemistry, a
molecule is generally represented as a set of 3D spheres with vari-
ous radii. In this paper, we propose a method to compute Voronoi
diagrams for a set of spheres in the 3D discrete domain. We
achieved interactive construction of Voronoi diagrams through our
adaptive subdivision scheme and massively parallel processing sup-
ported by current graphics hardware.

2 GPU Based Voronoi Diagram Computing

We get the Voronoi diagrams for the given sphere sites. Each sphere
site si is described as its center point ci = (xi, yi, zi) and its radius
ri. Let S = {si|1 ≤ i ≤ n} be a set of sphere sites in the 3D
space. From a query point q = (x, y, z), the Euclidean distance to
a sphere site si is calculated as dist(q, si) = ‖q − ci‖ − ri. The
Voronoi region of a sphere site sp can be formed as : reg(sp) =
{p|dist(p, sp) ≤ dist(p, si), for all si ∈ S, si 6= sp}. When
dist(q, sp) = dist(q, sq), the point q belongs to both of reg(sp)
and reg(sq), to finally construct the boundary of those regions.

We are focusing on the discrete domain. Each rectangular voxels
in the 3D space is marked to belong to the specific region or to
the boundary area, to finally display the 3D Voronoi diagram. We
start from the distance between the center point q of the voxel and
the nearest sphere site sp. Though q ∈ reg(sp), we also need to
decide whether all the points in the voxel belong to reg(sp) or not.
We present a region decision algorithm for each voxel as follows:

Kernel Program
for each voxel,

with its center q and half of the diagonal length d
step 1. calculate dist(q, si) from the voxel center point q, for

all sphere sites si.
step 2. get dmin = min(dist(q, si)) and its corresponding

nearest sphere site smin.
step 3. count the number n of the sphere sites whose

dist(q, si) is less than dmin + 2d.
step 4. if n = 1, the voxel belongs to reg(smin).

otherwise, it may belong to the boundary of the
Voronoid regions with respect to the corresponding
sphere sites.

∗e-mail: kujinkim@yahoo.com
†e-mail:highshia@nate.com
‡(corresponding author) e-mail:oceancru@gmail.com

The above algorithm should be executed for all voxels, and thus
its CPU-based sequential execution may require a considerable
amount of time. We achieved its interactive execution with CUDA-
based massively parallel implementation. Voxel-related data are
stored into the CUDA texture memories and the above voxel-
specific algorithm is realized as a CUDA kernel program to finally
be executed as CUDA threads. Overall CUDA framework with
adaptive refinement can be represented as follows:

procedure framework
do
step1. subdivide the space into 8× 8× 8 voxels, which is the

current CUDA hardware limit.
step 2. invoke kernel program for each voxel
step 3. find any voxels belonged to boundary areas
step 4. if any, process framework recursively for those voxels.
until user-specified accuracy limit is achieved.

3 Experimental Results

As shown in Table 1, we achieved at least 15 times and at most 129
times faster performance in comparison with CPUbased sequential
implementations. Our CUDA-based implementation can be used in
an interactive manner, while CPU-based ones not.

subdivision execution time (msec) Speed ups
CPU-based CUDA-based (times)

32× 32× 32 750 48 15.63
64× 64× 64 6,016 69 87.19

128× 128× 128 47,750 404 118.19
256× 256× 256 381,625 2,939 129.85

CPU: Intel Core2 Duo E8400, 3GHz CPU with 3GB RAM
GPU: nVIDIA GeForce GTX 285 with 1GB Video RAM
with 1468 sphere sites from a protein molecule description file.

Table 1: Execution times for our implementations

4 Conclusions

In this paper, we presented an interactive-time algorithm to com-
pute Voronoi diagrams for protein molecules. With respect to the
user-specified accuracy limits, our algorithm shows at least 15 times
to at most 129 times better performance in comparison to the single-
core CPU-based implementations. Based on our work, we expect to
develop interactive-time algorithms to compute the volume of the
protein and molecular surfaces as further researches.


